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ROCK regulates the intermittent mode of
interstitial T cell migration in inflamed lungs
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Lihua Yang4, Samantha L. Hamilton4, Mark J. Miller4, Melanie E. Moses2,5,6 & Judy L. Cannon 1

Effector T cell migration through tissues can enable control of infection or mediate inflam-

matory damage. Nevertheless, the molecular mechanisms that regulate migration of effector

T cells within the interstitial space of inflamed lungs are incompletely understood. Here, we

show T cell migration in a mouse model of acute lung injury with two-photon imaging of

intact lung tissue. Computational analysis indicates that T cells migrate with an intermittent

mode, switching between confined and almost straight migration, guided by lung-associated

vasculature. Rho-associated protein kinase (ROCK) is required for both high-speed migration

and straight motion. By contrast, inhibition of Gαi signaling with pertussis toxin affects speed

but not the intermittent migration of lung-infiltrating T cells. Computational modeling shows

that an intermittent migration pattern balances both search area and the duration of contacts

between T cells and target cells. These data identify that ROCK-dependent intermittent T cell

migration regulates tissue-sampling during acute lung injury.
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T cells contribute to immune protection against infectious
agents and cancer or alternatively can mediate tissue
damage in inflammatory settings. Imaging studies have

revealed that motility of effector T cells within lymph nodes and
sites of inflammation is an important component of an effective
immune response1, 2. T cells in peripheral tissues are thought to
perform mostly ‘‘informed’’ motion guided by environmental
cues towards target cells3. Nevertheless, the precise molecular
mechanisms that regulate migration of effector T cells vary in
different tissue contexts.

One important mechanism of effector T cell movement in
tissues is chemotactic guidance, which facilitates T cell migration
toward infectious foci in the skin and liver4–6. For example,
expression of CXCR3, the receptor for the chemokines CXCL9
and CXCL10, enables movement of CD8+ effector T cells toward
infectious foci4, 5. In other contexts, for example in inflamed
brain, skin and in tumors, T cells follow structural guidance cues,
such as extracellular matrix fibres and the vasculature7–12. In the
skin, such ‘‘contact guidance’’ of T cells is mediated by integ-
rins10, whereas in tumors integrin-independent contact guidance
has been identified11. In the absence of integrin-mediated adhe-
sion, T cells may utilize three-dimensional migration strategies
and squeeze through pre-formed channels using ‘‘amoeboid’’
motion along a path of least resistance13. In vitro experiments of
various cell-types, including T cells, indicate that the cell-intrinsic
RhoA-ROCK-myosin II pathway, a regulator of the actomyosin
cytoskeleton, enables amoeboid squeezing14–16. Two-photon
studies have confirmed that inhibition of ROCK or myosin II
leads to a moderate reduction of the speed of naive T cells in the
lymph node14, 17. Nevertheless, the relevance of ROCK during
effector T cell migration in inflammatory tissues has not been
addressed formally. It also needs to be considered that in some
cases, such as in the pancreas of diabetic mice, cytotoxic T lym-
phocytes (CTL) migrate with apparent randomness, independent
of environmental guidance cues18, 19.

Acute lung injury, in particular its severe form acute respira-
tory distress syndrome, is a clinical syndrome with high mortality.
Currently, treatments are limited to supportive management20.
The syndrome is initiated by an ‘‘exudative phase’’, which is
characterized by a massive influx of immune cells, including
T cells20–22. Data also indicate that effector T cells contribute
actively to the progression and resolution of acute lung
injury22, 23. In particular, experimental and clinical studies have
established a link between lung injury and the accumulation of
resident CD8+ T cells24–27. Even though it is likely that efficient
lung tissue-infiltration by CD8+ T cells is important during
pathogenesis, interstitial T cell migration during acute lung injury
is barely investigated. Although two-photon studies have shown
that lung-infiltrating T cells perform active interstitial migration
during infection and asthma, we know very little about the
molecular mechanisms that enable tissue-navigation of lung-
infiltrating T cells28–31. A better understanding of the mechan-
isms that enable efficient lung-infiltration by T cells could be
crucial for the development of improved therapies for acute lung
injury and other lung diseases.

In the present study, we perform two-photon imaging on
mouse lungs during acute lung injury to observe CD8+ T cells
during the effector phase of an immune response. We find that
CD8+ effector T cells extravasate effectively into the interstitial
lung space and then show intermittent motion, switching between
confinement and straight migration. Movement along lung-
associated vasculature facilitates straight motion. Chemokines
fine-tune the speed of lung-infiltrating T cells, but have a mar-
ginal effect on intermittent migration. ROCK on the other hand is
crucial for T cells to achieve high speeds and straight migration.
These data suggest that environmental and cell-intrinsic signals

cooperate to enable effective contact-guided tissue-navigation of
T cells during acute lung injury.

Results
Interstitial T cell migration during acute lung injury. The
principal goal of this study was to analyze the in situ behavior of
effector T cells in intact lung tissue. To this end, we used a well-
established murine model of acute lung injury and injected the
TLR4 ligand lipopolysaccharide (LPS) intranasally into C57BL/6
mice21, 32. In vitro activated polyclonal effector CD8+ T cells from
Ubiquitin-GFP animals were introduced one day later via intra-
venous injection. Lungs from recipient mice were analyzed two to
five days after adoptive transfer.

We then assessed into which lung compartments the
adoptively transferred T cells migrated, and first focused on
whether effector CD8+ T cells extravasated into the lung
interstitium, a major limiting step of the effector phase of an
adaptive immune response. To quantify the percentage of T cells
that have reached the interstitial space of the lung, we used a well-
established method where intravascular T cells are labeled via
intravenous injection of an anti-CD3 antibody shortly before
organ harvest, followed by flow cytometry analysis of digested
lungs33. Analysis of peripheral lymph nodes, where T cells are
segregated from the vasculature, revealed that most adoptively
transferred GFP+ T cells were negative for the intravascular
CD3 stain (CD3−), which indicated that they were extravascular
(Fig. 1a, left panel). In lungs from healthy control mice, adoptively
transferred effector T cells were mostly CD3+, i.e., intravascular,
indicating that these cells reach the lung vasculature, yet fail to
enter the interstitial space (Fig. 1a, middle panel). In contrast,
analysis of lungs from mice that received intranasal LPS revealed
that the majority of transferred effector CD8+ T cells were CD3−,
i.e., extravascular (Fig. 1a, right panel). Staining with an anti-CD8
antibody confirmed that typically >90% of adoptively transferred
cells were CD8+ (Fig. 1a). Using immunofluorescence, we found
that most adoptively transferred GFP+ T cells were solitary in
healthy control lungs, but after treatment with LPS, regions with
high T cell density emerged (Fig. 1b, middle and right panels).
Consistent with flow cytometry, most T cells in inflamed lungs
were negative for intravascular CD3 stain (Fig. 1b, left and right
panels). We then combined intravascular antibody staining with
intranasal injection of an anti-CD45 antibody, as reported
previously34, which revealed that ~ 80% of the adoptively
transferred T cells were protected from staining with either
antibody (Fig. 1c). The fact that most adoptively transferred
T cells were spatially segregated from the vasculature and airways
confirmed that during acute lung injury, the majority of effector
CD8+ T cells reside in the interstitial lung space.

To experimentally characterize T cell migration within the
interstitial space of inflamed lung tissue, we used two-photon
imaging of intact explanted inflamed lung tissue (Fig. 1d;
Supplementary Movie 1). Analysis of three-dimensional time-lapse
sequences revealed specific regions where T cells displayed high
migratory activity and other regions with less migration, similar to
previous observations in lung tumors11. We focused on regions of
high migration for the remainder of the study. We were able to
image and track effector T cells for up to 3 h and found that T cells
performed displacements of up to several hundred micrometers over
the observation period (Fig. 1d). Altogether, two-photon imaging
showed that during acute lung injury CD8+ effector T cells move
actively within the interstitial space of the lung.

Lung infiltrating T cells move over a wide range of speeds. In
an initial analysis of T cell motion, we found that during the 15
min time frame typically used to analyze T cell movement in live
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tissues, T cells move at a median speed of 2.3 µmmin−1 (Fig. 2a,
green solid line). This is similar to speeds reported for T cell
motility in peripheral sites, including skin, brain and lungs, but
slower than the speed seen in lymph nodes4, 12, 31, 35–37. In the 15
min time window, we saw that a significant proportion of T cells
showed no movement (0–1 µmmin−1) while others moved at
speeds of >7 µmmin−1. T cells moved with an even greater range
of speeds when we determined the ‘‘instant’’ frame-to-frame

speeds (90 s). A higher fraction of T cells showed no movement
and some cells displayed speeds close to 10 µmmin−1 (Fig. 2a,
pink bars). Conversely, at much longer time periods of up to 2 h,
we found that T cell speeds were more homogenous, with most
T cells moving between 2 and 4 µmmin−1 (Fig. 2a, blue dotted
line). This suggested that lung-infiltrating T cells switch repeti-
tively between fast and slow migration, reminiscent of previous
reports of T cells in lymph nodes and infected brain37, 38.
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Fig. 1 Effector T cells localize to the interstitium of the lung upon inflammation. GFP+ effector T cells were adoptively transferred into control and LPS-
treated mice and analyzed two to five days later. a, b Anti-CD3 antibody was injected i.v., followed 5min later by harvest of peripheral lymph nodes (PLN)
and lungs. a Single-cell suspensions from the harvested organs were stained with an anti-CD8 antibody and analyzed with flow cytometry. We gated for
GFP+ (adoptively transferred) T cells and show the percentage of extravascular (CD3−) and CD8+ T cells. b Lungs were fixed with 4% paraformaldehyde
and analyzed with confocal microscopy, enabling co-visualization of GFP+ T cells (green) and the CD3 surface stain (red). Arrows highlight double-positive
cells. Scale bars: 20 µm. c Anesthetized mice were injected i.n. with anti-CD45 antibody. After a few minutes, anti-CD3 antibody was injected i.v., followed
5min later by harvest of lungs. dWe performed two-photon (2P) imaging of inflammatory regions of explanted lungs. T cells (green) and T cell trajectories
(white) were superimposed on the image. Experiments were repeated three times
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Indeed, visual inspection of individual tracks revealed that
T cells sometimes did not move at all for tens of minutes after
which they switched to periods where they moved persistently
with high speed (Fig. 2b, compare green and red segments;
Supplementary Movie 2). This was further supported by speed
autocorrelation analysis, which revealed a positive correlation for
up to several minutes (Fig. 2c). We then plotted the relationship
between time and mean squared displacement (MSD). The
relationship was roughly linear, and the slope of the curve,
estimated by linear regression, revealed a motility coefficient of
6.45 µm2min−1 (Fig. 2d). This motility coefficient is similar to
that of memory T cells in the skin but significantly below
observations of naive T cells in lymph nodes15, 39, 40, suggesting
that the lung-environment is not particularly conducive to
effective tissue-navigation. Taken together, we concluded that
lung-infiltrating T cells display an intermittent migration pattern,
characterized by repetitive inter-conversion between fast and slow
migration.

Lung T cells show a lognormal correlated random walk.
To explore the migration patterns of lung-infiltrating T cells
in more depth, we tested whether their migration behavior
could be accurately described with standard migration

models. Indeed, the identification of suitable mathematical
models, such as simple random walks and Levy walks2, 3, 36, 38, 41,
has enabled the quantification of tissue-infiltration and
search behavior of T cells within various tissues.
Conversely, significant discrepancies between models and
empirical data can help identify characteristic or unusual
migration patterns.

First, we plotted the cumulative distribution function (CDF) of
experimentally observed two-dimensional speeds of frame-to-
frame migration steps (Fig. 3a, solid black line), and tested
whether it could be accurately fit by relevant theoretical
distributions. We found that the Rayleigh distribution, which
describes two-dimensional displacements of Brownian motion,
was a poor fit for the experimental T cell speeds due to a major
underrepresentation of low and high speeds (Fig. 3a, dashed black
line). Conversely the best fit for power-law distributions,
characteristic of superdiffusive Levy walks, showed a severe
overrepresentation of low and high speeds (Fig. 3a, dash-pointed
blue line). We then focused on the log-normal distribution, which
we previously demonstrated as an appropriate model for the
T cell speeds in lymph nodes36. We found that the best fit for a
log-normal distribution led to a better recapitulation of experi-
mental speeds (Fig. 3a, dotted green line; Supplementary Table 1).
However, the log-normal distribution failed to represent a small
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Fig. 2 Lung infiltrating T cells move over a wide range of speeds. GFP+ effector T cells were injected i.v. into LPS-treated mice. After two to five days, lungs
were explanted and imaged with two-photon microscopy. Tracks with a duration of 120min were analyzed. a Shown are the average speeds of complete
120min ‘‘parent’’ tracks (n= 37 tracks), and of 15 min (n= 259 tracks) and 1.5 min (n= 2923 tracks) track ‘‘children’’. b Representative T cell track with
multiple transitions between ‘‘fast’’ (green segments) and ‘‘slow’’ migration (red segments). Numbers indicate time in minutes. c Autocorrelation of speeds.
Means of 37 tracks (+/− standard error of the mean). d The mean squared displacements (MSD) of 37 tracks (+/− standard error of the mean). The blue
line and shaded area show the linear regression with confidence interval. All quantitative analyses were performed on pooled data obtained from three
independent experiments
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population of T cells with very high speeds (7.5 to 10 µmmin−1),
reflected by the region to the right of the intersection of the log-
normal distribution and the experimental CDF (Fig. 3a). Thus,
curve fitting of speeds led to the identification of a small but
significant subpopulation of T cells moving at high speeds.
Altogether, these data showed that effector T cells in the lung do
not move with Brownian or super-diffusive Levy walk strategies.

We also quantified the autocorrelation of turning angles over
time. The autocorrelation dropped strongly from 0.2 to 0.05 at
time intervals between 1.5 and 3min, but stayed positive for up to
10 min (Fig. 3b). Thus, T cells maintain some level of
directionally persistent migration for several minutes. This also
argued against pure Brownian motion, which is characterized by
uncorrelated turning angles.

Altogether, the facts that lung-infiltrating T cells have roughly
log-normally distributed speeds and show directional persistence
indicate that a log-normal correlated random walk is a suitable
model of the migration of lung-infiltrating T cells, similar to naive
T cells in lymph nodes36. Moreover, curve-fitting confirmed the
presence of a small subpopulation of high instantaneous speeds,
which corroborated that lung-infiltrating T cells switch between
different speeds.

Lung T cells switch between confined and straight migration.
The presence of intermittent high-speed migration in effector
T cells prompted us to more carefully characterize the directional
behavior of lung-infiltrating T cells. First, we visually inspected
motile lung-infiltrating T cells, which revealed that some T cells
moved back-and-forth for tens of minutes (Fig. 4a, magenta
segment; Supplementary Movie 3), and then switched to relatively
straight ‘‘ballistic’’ migration (Fig. 4a, green segment). To quantify
these motility phenotypes, we compared the displacement of
original ‘‘experimental’’ T cell tracks with randomized track
derivatives. Each randomized track derivative has an identical
total length as its experimental source track, but the orientation
and order of each directional vector between consecutive time
steps was randomized. This allowed a specific comparison of
directional persistence while keeping the speed constant (Sup-
plementary Fig. 1). If experimental T cell tracks showed less
displacement than randomized track derivatives, the analyzed
T cells were considered ‘‘confined’’. Conversely, if the

displacements exceeded that of randomized tracks, T cell
migration was considered ‘‘straight’’.

We first analyzed tracks of 15 min duration and generated a
single randomized track for each experimental track. Analysis of
the displacements revealed that in comparison to the randomized
tracks, the experimental T cell tracks were enriched for high and
low displacements, while intermediate displacements were
reduced (Fig. 4b). This confirmed that lung-infiltrating T cells
had a propensity to move either with high directional persistence
or to remain confined. To corroborate this finding, we calculated
for each experimental and randomized track a straightness Z-
score. This score measured how many standard deviations the
given displacement deviated from the expected displacement of a
randomized track ensemble (Supplementary Fig. 1). Comparison
of the straightness Z-scores from experimental and randomized
tracks revealed that experimental tracks were enriched for low
(confined) and high (straight) straightness Z-scores (Fig. 4c). We
confirmed that tracks with high straightness Z-scores at 1 h
achieved total displacements of up to several hundred micro-
meters (Fig. 4d), whereas tracks with low Z-scores showed back-
and-forth movement and lower displacements (Fig. 4e).

Given that individual T cells appeared to switch between
multiple motility states, we quantified to what degree individual
T cells switch between random, straight and confined migration
over time. We analyzed 120 min source tracks (80 timesteps) and
computed the straightness Z-score of all contained ‘‘subtrack
children’’ of 15 min (10 timesteps). Subtracks with Z-scores below
−1.7 were defined as confined and subtracks with Z-scores above
1.7 as straight, because only very few randomized tracks had such
extreme values (Fig. 4c). Virtually all tracks contained some
random subtracks. Strikingly, 16% of the tracks contained a
significant number of confined subtracks and 39% of the tracks
contained a significant number of straight subtracks. Moreover,
26% of tracks contained both straight and confined subtracks
(Fig. 4f). In control tracks, where all subtracks were randomized,
fewer than 10% of source tracks contained a significant number of
straight or confined subtracks (Supplementary Fig. 2). Altogether,
these findings indicated that lung-infiltrating T cells use an
intermittent migration strategy and switch between periods of
confinement and straight ballistic relocation.

Next, we sought to verify that the observed intermittent
migration pattern of lung-infiltrating T cells is not affected by
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the lack of blood flow in explanted lung tissue. To this
end, we performed intravital two-photon imaging of T cell
motion in inflamed lung exposed by surgical preparation, which
maintains intact perfusion and ventilation. Visual inspection of
lung-infiltrating T cells in live mice revealed transitions between
slow, confined and straight migration similar to that seen in
explanted lungs (Fig. 4g; Supplementary Movie 4). Moreover,
quantitative analysis of motile T cells confirmed fluctuations
between low and high speeds (Fig. 4h), as well as between
straight and confined migration (Fig. 4i). We conclude
that the intermittent migration pattern is a general motility
pattern of lung-infiltrating T cells present in explanted tissues and
in live mice.

Contact guidance of lung T cells along the vasculature. Recent
two-photon studies have shown that effector T cells in various
inflamed tissues, including skin, neural tissue and tumors, display
contact guidance, i.e., move along structural guidance cues such
as the vasculature and extracellular matrix fibers7–12. We hypo-
thesized that the capacity of T cells to perform directional relo-
cation in lung tissue is dependent on environmental guidance
cues within the inflamed lung. We tested whether lung-
infiltrating T cells move along the vasculature as observed for
T cells in tumors and autoimmune brain lesions7, 9, 11. To
experimentally address this, we co-visualized GFP+ T cells and
vasculature labeled by injection of fluorescently labeled lectin with
two-photon microscopy.
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Visual inspection revealed that directionally persistent and
confined T cells frequently moved along neighboring vessels
(Fig. 5a–c, bold green lines; Supplementary Movies 5–7). We also
observed T cells that crossed vessels or that moved in the ‘‘empty’’
space in between vessels (Fig. 5a, b, white thin lines). To
objectively quantify alignment between T cell movement and the
vasculature, we employed a customized computational approach.
Briefly, for each T cell track segment with a maximum
displacement of 24 µm, an ‘‘alignment angle’’ was determined,
which measures how well the T cell track is aligned with the main
orientation of the surrounding vasculature (0 degrees: perfect
alignment; 90 degrees: perpendicular crossing of vessel; for a
more in depth discussion of methodology, see methods and
Supplementary Fig. 3). As a control, we generated for each
experimental track a randomized track derivative and measured
its alignment angle. We found that experimental tracks were
slightly but significantly better aligned with the vasculature than
randomized control tracks (Fig. 5d).

In addition, we analyzed multiple distinct T cells that moved
consecutively through the same tissue volumes. We found that
T cells tended to move along very similar paths, even when they
traversed the space at distinct time-periods (Fig. 5e; compare blue
and green tracks; Supplementary Movie 8). Moreover, such tracks
were frequently aligned with the surrounding vasculature (Fig. 5e).
These results suggested that contact guidance by the vasculature

influences effector T cell movement in the lung upon acute lung
injury.

Chemokines promote speed but not persistence of lung T cells.
Next, we explored whether chemokines contribute to environ-
mental guidance of effector T cell migration within inflamed lung
tissue. While recent two-photon imaging studies have shown that
in some cases chemokine trails guide tissue-infiltrating T cells42,
the impact of chemokines on interstitial immune cell migration is
more complex than originally envisaged43.

Similar to previous studies, we used pertussis toxin (PTX), an
inhibitor of chemokine receptor-dependent Gαi-type G protein
signaling, to study effects of chemokines in vivo11, 38, 44, 45.
Briefly, we captured the migration of lung-infiltrating T cells as
described above using two-photon microscopy with our imaging
model of acute lung injury (‘‘before PTX’’). We then added PTX
directly to the superfused medium. After incubating the lungs for
2 h to ensure effective PTX inhibition, we measured T cell
migration again (‘‘after PTX’’). Migration before and after
treatment was measured in identical imaging regions, which
excluded a confounding influence due to environmental hetero-
geneity. Analysis of average track speeds revealed a significant
reduction after treatment with PTX, similar to previous
observations in lung tumors and infected brain11, 38 (median
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Fig. 5 Guidance of lung-infiltrating T cells along the vasculature. GFP+ effector T cells were injected i.v. into LPS-treated mice. After two to five days, the
vasculature was labeled intravitally by intravenous injection of fluorescently labeled lectin. Two-photon imaging of explanted lungs enabled simultaneous
visualization of GFP+ T cells and the vasculature. a–c High-resolution images of vascular stain of live lung tissue (left panels) with superimposed T cell
trajectories (right panels). Tracks that are apparently aligned with the vasculature are highlighted in green. Scale bars= 20 µm. d Tracks were split into 24
µm wide segments (n= 414 segments from ten movies). For each experimental segment, a randomized control segment was generated. An alignment
angle, between segments and the main orientation of the vasculature, was calculated for all experimental and randomized segments. The Mann–Whitney
test was used to calculated P-values for comparison of alignment angles from experimental and randomized segments. e High-resolution image of lung
region displaying adoptively transferred T cells (in green) and lung vasculature (in red). The blue dotted line and the green solid line indicate tracks of two
distinct T cells. Scale bar= 20 µm
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speeds: before treatment: 2.4 µmmin−1; after treatment: 2.0 µm
min−1; Fig. 6a; Supplementary Movie 9). Consistent with the
reduction in speed, time vs. mean squared displacement
measurements revealed that PTX-treatment also reduced rate of
tissue infiltration by lung-infiltrating T cells by 50% (Fig. 6b;
motility coefficients: before treatment: 6.80 µm2min−1; after
treatment: 3.59 µm2min−1). Interestingly, when we analyzed
T cell tracks for directional persistence using the straightness Z-
score as previously described, PTX-treatment did not lead to
significant changes (Fig. 6c). This suggested that while chemo-
kines deposited within lung tissues can regulate T cell speed,
intra-tissue chemokine gradients were dispensable for the
intermittent migration of lung-infiltrating T cells. This was
corroborated by in vitro experiments, where PTX inhibited
spontaneous T cell migration through transwells even when no
external chemokine gradients were generated (Supplementary
Fig. 4a). Moreover, chemokines CXCL10, CCL21, and CXCL12
all induced migration (Supplementary Fig. 4b).

ROCK is required for tissue-navigation of lung T cells. RhoA-
ROCK-myosin II pathway has been shown to be important in
promoting the speed of naive T cells navigating within lymph
nodes14, 15, 17. We also found that in vitro, chemokines can
induce ERK and RhoA-ROCK signaling pathways in CTL (Sup-
plementary Fig. 4c, d), as shown previously for other cell
types17, 46–48. We then tested whether ROCK promotes migration

of effector T cells within the inflamed lung environment. To this
end, we used our two-photon imaging model of acute lung injury
and tracked lung-infiltrating T cells before and after addition of
the ROCK inhibitor Y-27632. The ROCK inhibitor strongly
reduced the average track speed of lung-infiltrating T cells
(median speeds: before treatment: 2.5 µmmin−1; after treatment:
0.8 µmmin−1; Fig. 7a; Supplementary Movie 10). ROCK inhibi-
tion also led to a massive reduction of the motility coefficient, as
determined by time vs. MSD analysis (Fig. 7b; motility coefficient:
before treatment: 7.08 µm2min−1; after treatment: 1.65 µm2min
−1). Importantly, the ROCK inhibitor also led to a significant
reduction of the straightness of analyzed tracks (Fig. 7c). Notably,
inhibition of ROCK impaired migration of lung-infiltrating
T cells more strongly than inhibition of chemokine signaling
(compare Fig. 6 with Fig. 7), suggesting that ROCK-activity is
only partially dependent on chemokine-dependent Gαi signaling.
This was confirmed in vitro, where treatment with the ROCK-
inhibitor Y-27632 reduced spontaneous transwell migration
much more strongly than PTX (Supplementary Fig. 4a). These
results showed that ROCK-dependent cytoskeletal remodeling is
a major requirement for switching between fast and directionally
persistent migration of lung-infiltrating T cells during acute lung
injury.

Intermittent migration increases T cell contacts with target. To
determine the potential role of intermittent migration as a
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(PTX). Tracks with a duration of 15 min were analyzed (n= 205 tracks both before and after treatment). a–c Mean speed (a), time vs. mean squared
displacement (MSD) (b), and straightness Z-score (c) before and after treatment with inhibitor. (b) Bars show mean squared displacement. Also shown are
standard errors (error bars), linear regression (line) and confidence intervals (shaded areas). Shown are pooled data from experiments with four distinct
mice (a, c) or data from a single representative experiment (b). P-values were computed with the Mann–Whitney test
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Fig. 7 ROCK is required for straight lung T cell migration. GFP+ CD8+ effector T cells were injected i.v. into LPS-treated mice. After two to five days, lungs
were explanted and imaged with two-photon microscopy. Identical regions were imaged before and after addition of Y-27632. Tracks with a duration of 15
min were analyzed (n= 92 tracks both before and after treatment). a–c Mean speed (a), time vs. mean squared displacement (MSD) (b), and straightness
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representative experiment (b). P-values were computed with the Mann–Whitney test
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strategy for T cell immunity in inflamed lung, we used compu-
tational modeling to compare the interaction dynamics of T cells
that display purely confined or straight migration with those that
display an intermittent migration pattern (see Methods and
Supplementary Movies 11 and 12). Briefly, we studied an area of
1 mm2 populated by 200 T cells and 200 target cells and modeled
migration and T cell contacts for 25 h. This analysis revealed that
T cells that moved straight with a constant speed of 6 µmmin−1

rapidly engaged in brief contacts with the majority of target cells
(50% were contacted after half an hour; Fig. 8a). T cells that
showed intermittent migration showed intermediate efficiency
(50% of targets contacted after 2 h; Fig. 8a) and confined T cells

showed the poorest capacity to engage in brief contacts with
target cells (50% contacted after 6 h; Fig. 8a).

A different picture emerged when we assessed the duration of
interactions, which is relevant since long-lasting contacts by CTLs
might be an important prerequisite for the induction of lytic cell
death of targets49. Analysis of the maximum continuous contact of
each target cell with a T cell revealed that in the straight T cell
group only short contacts were established (Fig. 8b; blue dashed
line). In the confined group, many targets established no contacts
at all, also leading to short contact durations (Fig. 8b; red dotted
line). In contrast, intermittent migration led to an enrichment of
longer-lasting contacts between 10 and 100min (Fig. 8b; black
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solid line). Time-course analysis for different observation periods
confirmed this result. Median contact duration remained below 6
min for straight and confined T cells, whereas the contact duration
of intermittent T cells increased continuously (Fig. 8c). These
results demonstrated that intermittent T cell migration can allow
target identification in space while also enhancing the duration of
continuous contact times between T cells and target cells.

Discussion
In order to provide protection against infections and cancer,
T cells must re-circulate within organisms and migrate through
individual tissues. In contrast to other organs, such as the skin
and the gut, the molecular mechanisms that regulate T cell
migration in the lung have remained relatively poorly char-
acterized50. In the present study, we provide novel insights into
the molecular mechanisms that regulate T cell motility within the
interstitial space of inflamed lungs using a mouse model of acute
lung injury. We find that T cells display an intermittent migration
pattern, characterized by transitions between confinement and
straight relocation. The directionality of T cells is not random but
partially aligned with the architecture of the lung tissue.
Mechanistically, the RhoA-ROCK-myosin II signaling pathway
enabled high-speed straight migration of lung-infiltrating T cells.
Computational studies provided proof-of-principle that inter-
mittent migration balances the need for spatial coverage as well as
the establishment of long-lasting contacts between T cells and
target cells.

We use two-photon imaging to obtain a direct view of T cell
behavior at high spatial and temporal resolution within live lung
tissue. Importantly, we track T cells for up to 3 h, whereas in
many previous studies the analyzed track duration was usually in
the range of 10 to 40 min11, 28–31. The generation of long con-
tinuous trajectories is feasible because we captured movie
sequences of several hours duration and performed correction for
tissue-drift, a common problem during two-photon imaging51.
Furthermore, in our system the T cells move with relatively low
speeds, so that only very few cells ‘‘escape’’ from the image
volume during movie capture. The generation of such long
observation periods is crucial because shorter timescales gave the
misleading impression that the T cell population is heterogeneous
and composed of a subset of cells that do not move at all while
other cells move with high speed and directional persistence
(Fig. 2). Longer movies suggest that in fact individual T cells
switched between periods of confinement, lasting typically tens of
minutes up to hours, and ballistic relocation.

We analyze two-photon imaging with customized statistical
tests to verify the visual impression that lung-infiltrating T cells
indeed switch between distinct migration modes seen in both
explanted and intravital lung imaging. Such intermittent migra-
tion patterns have been observed in a variety of organisms from
protozoa to mammals52, but their role for T cell migration in live
tissues has remained unclear. For example, Fourier analysis has
either supported or argued against periodic transitions between
active migration and pausing of naive T cells in lymph nodes37, 53.
In another study, intermittent T cell migration in infected brain
was supported by good fits between empirical data and computer
simulations, but direct observation of intermittent migration was
lacking38. In the present study, comparison of empirically deter-
mined T cell trajectories with randomized tracks and theoretical
models strongly supports the conclusion that lung-infiltrating
T cells indeed display intermittent confinement and straight bal-
listic motion that results in long-distance migration.

Theoretical computational models have shown that, under
appropriate conditions, intermittent migration can minimize
search time for targets of unknown location54. On the other hand,

intermittent migration of T cells could be an attempt to balance
thoroughness and extensiveness of search for target cells3, 36,
similar to a previously described migration model where T cell
meandering increased continuous contacts with target cells2. Our
computational model suggests that intermittent migration
includes both periods of ballistic relocation leading to increased
target identification while periodic confinement promotes more
intimate and longer-lasting contacts with target cells. This could
be important because some estimates have suggested that full
T cell activation may require up to 10 min of contact, depending
on peptide affinity and amount55. Moreover, CTLs are relatively
inefficient at killing individual target cells in vivo, and cumulative
contacts of 10–60 min have been shown to occur before target cell
lysis49. Intermittent migration may balance the need to search a
large area such as inflamed lung tissue while also allowing for
long lasting contacts leading to CD8 T cell activation and lytic
function.

Our study also provides novel insights into the molecular
mechanisms that regulate T cell migration within inflamed lung
parenchyma. While several recent studies have reported imaging
of T cell migration within live lung tissue, the mechanisms that
regulate migration of T cells infiltrating the lung parenchyma
have remained essentially uninvestigated28–31. Chemokines are
well-established promoters of recruitment of T cells to the lung
and other tissues56. In contrast, the mechanisms that influence
chemokine-dependent migration of T cells within the interstitial
space of diverse tissues are more complex and cannot simply be
explained by motility along pre-formed chemokine gradients. For
example, while track analysis of T cells in the skin was consistent
with chemotaxis4, 5, the bias was very subtle and only detectable
with sophisticated analytical tools5. In the brain, inhibition of
chemokine receptor-dependent Gαi-type G protein signaling with
PTX reduced speed of CTL by <50% but did not change motility
qualitatively38. Similarly, PTX reduced the motility coefficient of
T cells in lung tumors by 50%11. Here, we report that treatment
with PTX has a similar effect on the motility of CTL within
inflamed lungs: motility coefficients went down by 50%, but only
a marginal effect on the intermittent mode of migration was
observed as PTX-inhibited T cells still showed both confined and
directionally persistent migration. While we still do not know a
precise mechanism for ROCK activation by chemokines in vivo,
our results suggest that chemokines are not required for the
straight migration of T cells in the lungs, which is distinct to
guidance by chemokine trails in the trachea of influenza-infected
animals42.

Motility of effector T cells and other leukocytes within dense
tissues likely require dramatic cytoskeletal reorganization. We
targeted the RhoA-ROCK-myosin II pathway, which is specifi-
cally involved in leukocyte squeezing motion, particularly in
integrin-independent T cell movement14–16. Indeed, inhibition of
ROCK led to a massive reduction of both speed and directional
persistence of lung-infiltrating T cells. It is striking that inhibition
of the ROCK-pathway leads to a more pronounced reduction of
migration than inhibition of chemokine-dependent Gαi signaling.
This may indicate that chemokines activate ROCK at least par-
tially via Gαi-independent pathways46, or that activated T cells
have functional levels of active ROCK independent of chemokine-
induced signaling.

Our study also provides novel insights with regard to guidance
by environmental structures. It is already known that CD4+

effector T cells in the skin move along fibers comprised of
extracellular matrix in an integrin-dependent manner10. Naive
T cells move along a fibroblastic reticular cell (FRC) network in
lymph nodes, which is presumably mediated by deposited che-
mokines57. Recent reports also suggest that FRC-like networks
mediate migration of effector T cells in infected brain tissue12, 58.
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Our data extend these findings and corroborate that tissue-
specific structures within individual tissues are important in
mediating the type of motility taken by T cells. Altogether with
the importance of the ROCK pathway, these data support the
hypothesis that lung-infiltrating T cells employ a squeezing type
of migration along a ‘‘path of least resistance’’, a previously
proposed model of leukocyte migration in live tissues13, 16, 53.

Our findings may provide a rationale for novel treatments of
inflammatory lung diseases by targeting T cell motion in inflamed
lung. Indeed, targeting molecules that are involved in T cell
trafficking and migration, such as integrins and chemokines, is
the basis of established and emerging treatments of inflammatory
diseases, including psoriasis, multiple sclerosis, Crohn’s disease
and asthma50. In the present study, we show that the
ROCK pathway plays a crucial role for T cell migration within
inflamed lung, extending previous observations that this pathway
promotes migration of naive T cells in the lymph node17. This
suggests that localized targeting of the ROCK pathway may be
useful for the treatment of acute lung injury and other inflam-
matory diseases that depend on T cell navigation of inflamed lung
tissue mediating inflammatory damage. In fact, targeting of the
ROCK pathway is an emerging treatment option for glaucoma59.
In conclusion, our study sheds new light on effector T cell
function in an inflammatory tissue: quantitative analysis coupled
with inhibition of specific molecular pathways reveals novel
insight into the role of chemokines and ROCK in mediating
effector T cell migration in inflamed lung.

Methods
Mice and reagents. All experiments were performed with C57BL/6 (Jackson
Laboratories) and B6.Ubiquitin-GFP mice60 (Jackson Laboratories). Typically,
female animals were used between 8–20 weeks of age. Breeding and maintenance of
animals used in this research conform to the principles outlined by the Animal
Welfare Act of the National Institutes of Health. The protocol for animal work was
approved by the IACUC at the University of New Mexico (protocol # 15-200328-
HSC). All efforts were made to minimize suffering with use of ketamine and
xylazine when appropriate. Euthanasia was performed by isofluorane overdose.
Anti-CD3 (145-2C11, BioXCell) and anti-CD28 (PV-1, BioXCell) antibodies were
used for T cell priming. For intravascular T cell staining, anti-CD3-PerCPCy5.5
(145-2C11, eBioscience; flow experiments) and anti-CD3-Alexa 647 (17A2,
BDPharmingen; confocal imaging) were used. For intranasal staining, an anti-
CD45-PE antibody (30-F11; Molecular Probes) was used. In inhibitor experiments,
the ROCK inhibitor Y-27632 (Calbiochem) was used at a final concentration of 20
µM. PTX (Sigma) was used at a final concentration of 100 ng ml−1. Anti-CD8-
APC-Cy7 (53-6.7, eBioscience) was used for staining single cell suspensions. For
western blotting, anti-p-ERK (Thr202/Tyr204, Cell Signaling Technology #9101,
used at 1:1000), anti-ERK (137F5, Cell Signaling Technology, used at 1:1000) and
anti-actin antibodies (AC-15, Sigma, used at 1:5000) were used.

Generation of CD8+ effector T cells. Splenocytes from ubiquitin-GFP mice
were primed with anti-CD3 (0.5 µg ml−1) and anti-CD28 (0.5 µg ml−1) antibodies,
followed by stimulation with 20 Uml−1 IL-2 (National Institutes of Health)
every other day. Six to eight days after priming, the resulting cell population (~ 90%
CD8+ T cells) was used for adoptive transfer experiments.

Experimental model of acute lung injury. Mice were anesthetized intraper-
itoneally with 90 µg ketamine and 8.1 µg xylazine per gram body mass and received
150 µg LPS intranasally (Escherichia coli K-235, Sigma). After one or two days,
10 × 106 GFP+ effector T cells were injected via the tail vein. Two to five days after
LPS injection, the lungs of such ‘‘LPS-treated mice’’ contained inflammatory foci
with GFP+CD8+ effector T cell infiltrates.

Flow cytometry analysis. Flow cytometry analysis was performed to quantify the
percentage of intra-airway and/or intravascular T cells. Staining of intra-airway
T cells was achieved by anesthetizing mice with ketamine/xylazine, followed by i.n.
injection of 0.25 µg anti-CD45 antibody (30-F11; Molecular Probes; used at 1:100).
For intravascular staining, mice received 3 µg of anti-CD3 antibody via the tail vein,
followed after 5 min by euthanasia. Single-cell suspensions were generated
according to standard immunology protocols (lymph nodes) or with a commercial
tissue-dissociation kit (lung; Miltenyi, 130-095-927), followed by staining with an
anti-CD8 (53-6.7, eBioscience; used at 1:100) antibody and analysis with an LSR
Fortessa (BD). Gating strategies are shown in Supplementary Fig. 5.

Confocal imaging of fixed lung tissue. LPS-treated mice received 3 µg of anti-
CD3-Alexa 647 (17A2, BDPharmingen) antibody via the tail vein, followed after 5
min by euthanasia. Lungs were inflated with 2% agarose via the trachea29, and fixed
with 4% paraformaldehyde. The convex surface of such lungs was imaged with a
ZEISS LSM510 META/NLO confocal microscope. GFP and Alexa 647 were excited
simultaneously with Argon (488 nm) and HeNe (633 nm) lasers. Emitted fluor-
escent light was detected with photomultiplier tubes (PMT) after separation with a
suitable filter cube (dichroic mirror: 545 nm; bandpass: 500–530 nm; bandpass:
650–710 nm).

Two-photon imaging set-up. Two-photon imaging was performed either with an
upright Bio-Rad microscope or an inverted ZEISS LSM510 META/NLO (capturing
equivalent T cell behavior). Briefly, with the Bio-Rad setup, GFP and DyLight594
were excited simultaneously with a laser tuned to a wavelength of 800 nm and
detected with PMTs after separation of the emitted fluorescent light with a suitable
filter cube (dichroic mirror: 575 nm; bandpass filters: 510/40 nm and 670/45 nm).
Movie sequences were captured with the LaserSharp2000 software. For the ZEISS
LSM510 META/NLO imaging set-up, a Chameleon Ti:Sapphire laser tuned to 800
nm (Coherent) and suitable filter cube (dichroic mirror: 560 nm; bandpass filters:
500–550 nm and 575–640 nm) were used for specific detection of GFP and
DyLight594. Movies were captured with the ZEN user interface (Zeiss). In both
systems, time-lapse movies were composed of a series of image volumes (depth: 84
to 156 µm; step size: 6 or 12 µm) separated by 90” (movie duration >2 h) or 45”
(movie duration < 2 h).

Lung preparation for live imaging. The lung vasculature of LPS-treated mice was
labeled intravenously (i.v.) with 70 µg DyLight594-labeled lectin (from Lycopersi-
con esculentum, Vector Laboratories). After euthanasia, the lungs were surgically
dissected and inflated intratracheally with low gelling temperature agarose (2%
dissolved in PBS, Sigma)29. After transfer into a customized imaging chamber (for
imaging with the Bio-Rad microscope) or a Chamlide AC-B25 imaging chamber
(Live Cell Instruments; for the ZEISS microscope), mechanically stabilized lungs
were superfused with oxygenated DMEM (Dulbecco's Modified Eagle's medium)
(Gibco, 21063-045; 5% serum, Atlanta Biologicals; 100 units ml−1 penicillin and
100 µg ml−1 streptomycin, Gibco) and maintained continuously at 37 °C.

Intravital two-photon imaging. Mouse lung intravital two-photon imaging was
performed according to published procedures61 with the following modifications to
eliminate the use of ketamine/xylazine and improve tissue stability during imaging.
Mice were anesthetized with 310 mg kg−1 of Avertin given i.p. and intubated
orotracheally with a 20G angiocatheter. Following intubation, mice were ventilated
using a MiniVent Ventilator (Model 845, Harvard apparatus) with oxygen and
1.5% isoflurane at a rate of 200 breaths per minute and with a tidal volume of 10 µl
per gram body weight (typically 200 µl for a 20 g mouse). If the mouse showed any
signs of spontaneous breathing it was given a supplemental ½ dose of Avertin
before surgery. The lung was exposed through a left thoracotomy and the dorsal
surface of the left lobe (~ 1/3 of the lobe) was attached to a thin flexible plastic
support using a thin film of VetBond. The mouse is placed on the lower plate of a
custom built chamber and the upper plate of the chamber is assembled and lowered
over the exposed left lung. The plastic support attached to the bottom of the lung is
carefully lifted to bring the lung into contact with the cover glass lining the bottom
of the upper chamber plate and the plastic support secured with a hair-pin. The
mouse is maintained at 37 °C by warming both upper and lower plates using a
Warner TC-344C Dual Channel Temperature Controller (Warner Instruments).
Anesthesia is maintained with 1.5–2% isoflurane during imaging. Mice are imaged
for up to 4 h and given supplemental fluids (150 µl saline s.c.) for any experiment
lasting more than 1.5 h. The imaging procedure is terminal and at the end of the
experiment anesthesia is increased to 3% isoflurane and mice are euthanized by
cervical dislocation while deeply anesthetized. The upper chamber is filled with
water and video-rate and time-lapse imaging were performed with a custom built
two-photon microscope equipped with a 1.0 NA 20× water dipping objective
(Olympus) running ImageWarp acquisition software (A&B Software) as previously
described61, 62. Tissue perfusion was verified after the imaging preparation was
completed by evaluating superficial pulmonary capillaries under bright field and by
injecting 655 nm Q-dots (ThermoFisher) and performing video-rate imaging to
confirm robust pulmonary vessel flow. Chameleon Vision II Ti:Sapphire laser
(Coherent) tuned to 910 nm was used to excite fluorescence and emission detected
by PMTs using 495 nm and 560 nm dichroic filters: Blue (<495 nm, SHG collagen),
green (495–560 nm, eGFP), and red (>560 nm, 655 nm Q-dots). Auto fluorescence
of alveolar macrophages appears as mix of color (495–600 nm) and thus can be
discriminated from the eGFP signal. For time-lapse imaging, we acquired a 300 ×
340 × 75 µm volume as 31 sequential 2.5 µm z-steps with a time resolution of
approximately 25 s. For video-rate imaging, we acquired a 300 × 340 µm field at
~ 40 ms frame−1 time resolution for 500 continuous frames. X-Y resolution was
0.75 µmpixel−1, which resolved individual cells and small capillaries. Multi-
dimensional data sets were analyzed with MatLab.

Image-sequence processing and cell tracking. Image-analysis was performed
with MatLab, after importing ‘‘.pic’’ (Bio-Rad), ‘‘.lsm’’ (Zeiss) or ‘‘.stk’’ files
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(intravital imaging). Tissue drift was corrected by aligning consecutive image-
volumes based on the intensity pattern of the lectin stain. Cell-tracking was per-
formed manually by identification of the centroids of individual cells at consecutive
timepoints. When multiple cells collided, tracking was continued if individual cells
maintained a consistent forward momentum. Tracking was performed in three
dimensions. Nevertheless, because of the lower resolution in the Z-dimension,
several analyses, including speed autocorrelation, turning angle autocorrelation,
curve fitting, randomized track parameters and environment alignment were
performed on coordinate projections on the XY-plane.

Curve fitting. Curve fitting was performed similar to a previously published
approach36. Briefly, we used maximum likelihood estimation to parameterize
candidate probability distribution functions (PDF). Probability model parameters
were fitted using CDF, which is advantageous over the usage of binned data36. In
the present paper, we fit Rayleigh, power law and log-normal distributions. The
Rayleigh distribution was fit with the MatLab function raylfit. Fits for power law
and log-normal distributions were performed as described previously36. The
goodness of fit of each candidate PDF to empirical data was evaluated using
corrected Akaiki Information Criterion (AICc), negative log-likelihood measures
and the Kolmogorov–Smirnov (KS) test.

Autocorrelation of speed. To quantify whether individual T cells switched
between different speed states, i.e., whether over time similar speeds clustered
together, we calculated for each individual track an autocorrelation function for
speeds. Briefly, we computed the speed of each frame-to-frame velocity vector v.
For each single track, we then collected all speed pairs sp that are separated by
defined time intervals t. By computing the Spearman correlation coefficient for all n
speed pairs sp of time intervals t with the MatLab function corr, we obtained a
speed autocorrelation function for each track:

CtrackðtÞ ¼ corrð sp1; sp2; spn½ �;0 Spearman0Þ: ð1Þ

By averaging the track autocorrelation function over all t tracks, we obtained a
speed autocorrelation function for the entire population:

CpopulationðtÞ ¼ 1
t

Xt

x¼1

Ctrack tð Þ: ð2Þ

Time vs. mean squared displacement. As a quantitative measure for the rate of
tissue-infiltration, we measured the MSD over time. Briefly, we calculated, for each
individual track, the three-dimensional displacement x of cell positions separated
by defined time intervals t. For each time interval n different time delays were
included when the corresponding measurements were not overlapping temporally.
We calculated, for each track, the MSD of n displacements of a given time interval:

MSDtrackðtÞ ¼ 1
t

Xn

x¼1

xi tð Þ: ð3Þ

By averaging the MSD of all t tracks, we obtained the MSD for the entire
population:

MSDpopulationðtÞ ¼ 1
t

Xt

x¼1

MSDtracki tð Þ: ð4Þ

We used the MatLab function regress to perform linear regression, which
yielded the slope of the linear fit and its 95% confidence interval. Based on linear
regression we computed the motility coefficient M in dimension D= 3 of analyzed
cell populations:

M ¼ SlopeLinearRegression
2xD

μm2min�1: ð5Þ

Autocorrelation of turning angles. To quantify directional alignment within
individual tracks over time, we computed the turning angle autocorrelation, similar
to a previously described approach63. Briefly, we collected, for each single track, all
vector pairs separated by defined time intervals t. We then measured the cosine of
the turning angle θ of all vector pairs. The cosine has a value of minus one for
vectors that point in opposite directions and one for vectors that point in same
direction. By calculating the mean of all n cosines per time interval, we obtained an

autocorrelation function for individual tracks:

CtrackðtÞ ¼ 1
n

Xn

i¼1

cos θiðtÞð Þ: ð6Þ

By averaging the track autocorrelation function over all t tracks, we obtained an
autocorrelation function for the entire population:

CpopulationðtÞ ¼ 1
t

Xt

x¼1

Ctrack tð Þ: ð7Þ

Computation of the straightness Z-score. For each experimental track texp, we
generated 100 randomized track-derivatives trandi . The velocity vectors in the
randomized tracks had identical magnitudes as in the experimental track, but their
orientation and order were randomized (Supplementary Fig. 1a–d). We then cal-
culated the displacement between the start and end of the experimental track dexp,
as well as the displacements of the 100 randomized tracks drandi . The experimental
straightness Z-score Zexp shows how many standard deviations σ the experimental
displacement deviates from the expected displacement µ of all randomized track
derivatives (Supplementary Fig. 1e):

Zexp ¼ dexp � μðdrandi Þ
σðdrandi Þ

: ð8Þ

Negative Z-scores suggest that the experimental displacement is less than
expected by chance, and positive Z-scores suggest that the experimental
displacement is higher than expected by chance. For control purposes, we also
calculated a ‘‘randomized’’ straightness Z-score Zrand, which shows how many
standard deviations σ one single randomized displacement deviates from the
expected displacement µ of all randomized track derivatives:

Zrand ¼ drand1 � μðdrandi Þ
σðdrandi Þ

: ð9Þ

Switching between confinement and straight migration. The straightness index
of 15 min track children within 2 h parent-tracks was measured. Parent tracks were
categorized as straight when >10% of track children had a straightness index >1.7.
Parent tracks were categorized as confined when >7% of track children had a
straightness index <−1.7.

Analysis of alignment between trajectories and vasculature. To quantify the
alignment of T cell trajectories with the surrounding vasculature, we analyzed
image-sequences containing cell-trajectories and a channel with a lectin-stain of the
vasculature. To simplify the analysis, each track was split into track-segments so
that each segment had a maximum displacement of roughly 24 µm. We then
processed each segment with an image analysis algorithm and obtained an
‘‘alignment angle’’ that measures how much the segment deviates from the main
orientation of the vasculature, with a range from 0 degrees (perfect alignment) to
90 degrees (perpendicular movement over vessel).

Briefly, each segment was converted from a series of vectors into an ‘‘original’’
rasterized pixel-image (Supplementary Fig. 3a, b). The rasterization enabled a
pixel-by-pixel comparison between the track-segment and the corresponding
intensity of the vascular stain (Supplementary Fig. 3d). Specifically, we calculated
the median ‘‘overlap intensity’’ of all vascular pixels that overlapped with the given
segment, and we similarly measured the overlap intensity of a perpendicular
segment (Supplementary Fig. 3d). If the analyzed segment is well aligned with the
vasculature, we expect a high value of the ‘‘overlap ratio’’ between the overlap
indices of given and perpendicular segments.

Computation of the overlap ratio enabled quantification of how much the
original segment deviated from the main orientation of the vasculature. Briefly, we
generated rotated and/or translated segment ‘‘derivatives’’ of the original segment
image, calculated the overlap ratio for each segment derivative (Supplementary
Fig. 3c, e, f) and then isolated the 5% segment derivatives with the highest overlap
ratio. These segments are best aligned with the vasculature and, therefore, their
orientations provide an indication of the main orientation of the vasculature. We
thus calculated how much the original segment deviates from each of the best
aligned segment derivatives (‘‘rotation angle’’: 0 to 90 degrees; Supplementary
Fig. 3g, h). The median of all rotation angles was defined as the alignment angle
between the original segment and the main orientation of the surrounding
vasculature (Supplementary Fig. 3h).

Computational modeling of T and target cell interactions. To quantify the
contact duration between motile T cells and target cells, we simulated T cell
migration in an area of 1 mm2 for 25 h. Initially, the region was populated ran-
domly with 200 T cells of 10 × 10 µm2 size (no overlap between different T cells was
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allowed) and analogously with 200 target cells. Target cells were stationary. For
each T cell, a trajectory was created that contained 1000 positions, separated by
time-steps of 90 s duration. The specifics of how these trajectories were generated
depended on the type of migration that was simulated, i.e., straight, confined, and
intermittent. Straight T cells moved with a constant speed of 6 µmmin−1 and
obtained a random orientation that they maintained throughout the simulation.
The trajectories of the confined cells were based on experimentally obtained T cell
tracks. Briefly, all tracks were split into subtracks with a duration of 20 timesteps
and these subtracks were filtered so that only confined subtracks (straightness Z-
score< 1.5) remained. For each simulated T cell, these tracks were stitched together
randomly so that tracks of sufficient duration (>=1000 timesteps) were obtained.
Tracks for intermittent migration were obtained directly from experimental data.
For each simulated T cell, experimental tracks of 2 h duration were stitched
together randomly. When a T cell moved out of the field of view, it was randomly
re-positioned within the field of view. Contacts between T cells and target cells
were registered whenever T cells and target cells shared overlapping pixels.

Transwell assay. 5 × 105 T cells were seeded on top of 6.5 mm polycarbonate
membrane transwell inserts with a pore size of 5 µm or on polyester inserts with a
pore size of 3 µm (Corning). 0.5 µg ml−1 chemokines were added to the bottom of
each well. The percentage of cells that moved to the bottom well after 1.25 h was
measured by manual counting.

Western blot analysis. CD8+ effector T cells were lysed in cold lysis buffer
containing 1% triton and phosphatase inhibitors64. Protein concentrations were
measured with a BCA assay (Pierce, Thermo Scientific). We loaded 40 µg protein
lysates per lane and separated them on 12% Tris-glycine gels. After blotting, the
membranes were probed with primary and fluorescently labeled LI-COR secondary
antibodies (LiCor IRDye 680 conjugated goat polyclonal anti-mouse IgG, highly
cross adsorbed for anti-actin AC15; LiCor IRDye 800CW conjugated goat poly-
cloncal anti-rabbit IgG, highly cross adsorbed for anti-pERK and anti-ERK). All
secondaries were used at 1:10,000 dilution. The stained membranes were imaged
with a LI-COR Odyssey system (Lincoln, NE).

RhoA activation assay. Active RhoA was measured similarly to a previous
report65. Briefly, active GTP-bound RhoA in lysates from activated mouse CD8+

T cells was analyzed in microplates using the RhoA activation G-LISA kit
(Cytoskeleton Inc., Denver, CO). Absorbance of microplate wells at 490 nm was
read with an Infinite 200 spectrophotometer (Tecan US, Inc. Morrisville, NC).

Statistical analysis. For comparison of whether different distributions are distinct,
the Kolmogorov–Smirnov test was used (executed with MatLab’s kstest2). For
comparisons of the median of two distinct populations, a two-tailed
Mann–Whitney test was used (executed with MatLab’s ranksum function).
Detailed information about statistical tests, including exact n values and the
number of replicates are provided in the figure legends.

Data availability. The data that support the findings of this study are available
from the corresponding author upon request.
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